73 research outputs found

    Complementary vertices and adjacency testing in polytopes

    Full text link
    Our main theoretical result is that, if a simple polytope has a pair of complementary vertices (i.e., two vertices with no facets in common), then it has at least two such pairs, which can be chosen to be disjoint. Using this result, we improve adjacency testing for vertices in both simple and non-simple polytopes: given a polytope in the standard form {x \in R^n | Ax = b and x \geq 0} and a list of its V vertices, we describe an O(n) test to identify whether any two given vertices are adjacent. For simple polytopes this test is perfect; for non-simple polytopes it may be indeterminate, and instead acts as a filter to identify non-adjacent pairs. Our test requires an O(n^2 V + n V^2) precomputation, which is acceptable in settings such as all-pairs adjacency testing. These results improve upon the more general O(nV) combinatorial and O(n^3) algebraic adjacency tests from the literature.Comment: 14 pages, 5 figures. v1: published in COCOON 2012. v2: full journal version, which strengthens and extends the results in Section 2 (see p1 of the paper for details

    A Direct Reduction from k-Player to 2-Player Approximate Nash Equilibrium

    Full text link
    We present a direct reduction from k-player games to 2-player games that preserves approximate Nash equilibrium. Previously, the computational equivalence of computing approximate Nash equilibrium in k-player and 2-player games was established via an indirect reduction. This included a sequence of works defining the complexity class PPAD, identifying complete problems for this class, showing that computing approximate Nash equilibrium for k-player games is in PPAD, and reducing a PPAD-complete problem to computing approximate Nash equilibrium for 2-player games. Our direct reduction makes no use of the concept of PPAD, thus eliminating some of the difficulties involved in following the known indirect reduction.Comment: 21 page

    Statistical mechanics of random two-player games

    Full text link
    Using methods from the statistical mechanics of disordered systems we analyze the properties of bimatrix games with random payoffs in the limit where the number of pure strategies of each player tends to infinity. We analytically calculate quantities such as the number of equilibrium points, the expected payoff, and the fraction of strategies played with non-zero probability as a function of the correlation between the payoff matrices of both players and compare the results with numerical simulations.Comment: 16 pages, 6 figures, for further information see http://itp.nat.uni-magdeburg.de/~jberg/games.htm

    A finite characterization of K -matrices in dimensions less than four

    Full text link
    The class of real n × n matrices M , known as K -matrices, for which the linear complementarity problem w − Mz = q, w ≥ 0, z ≥ 0, w T z =0 has a solution whenever w − Mz =q, w ≥ 0, z ≥ 0 has a solution is characterized for dimensions n <4. The characterization is finite and ‘practical’. Several necessary conditions, sufficient conditions, and counterexamples pertaining to K -matrices are also given. A finite characterization of completely K -matrices ( K -matrices all of whose principal submatrices are also K -matrices) is proved for dimensions <4.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47913/1/10107_2005_Article_BF01589438.pd

    The Complexity of Approximating a Trembling Hand Perfect Equilibrium of a Multi-player Game in Strategic Form

    Get PDF
    We consider the task of computing an approximation of a trembling hand perfect equilibrium for an n-player game in strategic form, n >= 3. We show that this task is complete for the complexity class FIXP_a. In particular, the task is polynomial time equivalent to the task of computing an approximation of a Nash equilibrium in strategic form games with three (or more) players.Comment: conference version to appear at SAGT'1

    Computational complexity of LCPs associated with positive definite symmetric matrices

    Full text link
    Murty in a recent paper has shown that the computational effort required to solve a linear complementarity problem (LCP), by either of the two well known complementary pivot methods is not bounded above by a polynomial in the size of the problem. In that paper, by constructing a class of LCPs—one of order n for n ≥ 2—he has shown that to solve the problem of order n , either of the two methods goes through 2 n pivot steps before termination.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47905/1/10107_2005_Article_BF01588254.pd

    Generic properties of the complementarity problem

    Full text link
    Given f : R + n → R n , the complementarity problem is to find a solution to x ≥ 0, f(x) ≥ 0, and 〈 x, f(x) 〉 = 0. Under the condition that f is continuously differentiable, we prove that for a generic set of such an f , the problem has a discrete solution set. Also, under a set of generic nondegeneracy conditions and a condition that implies existence, we prove that the problem has an odd number of solutions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47915/1/10107_2005_Article_BF01584674.pd
    • …
    corecore